Extensions 1→N→G→Q→1 with N=C22 and Q=C4xS3

Direct product G=NxQ with N=C22 and Q=C4xS3
dρLabelID
S3xC22xC448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C22 and Q=C4xS3
extensionφ:Q→Aut NdρLabelID
C22:(C4xS3) = C4xS4φ: C4xS3/C4S3 ⊆ Aut C22123C2^2:(C4xS3)96,186
C22:2(C4xS3) = Dic3:4D4φ: C4xS3/Dic3C2 ⊆ Aut C2248C2^2:2(C4xS3)96,88
C22:3(C4xS3) = C4xC3:D4φ: C4xS3/C12C2 ⊆ Aut C2248C2^2:3(C4xS3)96,135
C22:4(C4xS3) = S3xC22:C4φ: C4xS3/D6C2 ⊆ Aut C2224C2^2:4(C4xS3)96,87

Non-split extensions G=N.Q with N=C22 and Q=C4xS3
extensionφ:Q→Aut NdρLabelID
C22.1(C4xS3) = D12.C4φ: C4xS3/Dic3C2 ⊆ Aut C22484C2^2.1(C4xS3)96,114
C22.2(C4xS3) = C8oD12φ: C4xS3/C12C2 ⊆ Aut C22482C2^2.2(C4xS3)96,108
C22.3(C4xS3) = C23.6D6φ: C4xS3/D6C2 ⊆ Aut C22244C2^2.3(C4xS3)96,13
C22.4(C4xS3) = C12.46D4φ: C4xS3/D6C2 ⊆ Aut C22244+C2^2.4(C4xS3)96,30
C22.5(C4xS3) = C12.47D4φ: C4xS3/D6C2 ⊆ Aut C22484-C2^2.5(C4xS3)96,31
C22.6(C4xS3) = C23.16D6φ: C4xS3/D6C2 ⊆ Aut C2248C2^2.6(C4xS3)96,84
C22.7(C4xS3) = S3xM4(2)φ: C4xS3/D6C2 ⊆ Aut C22244C2^2.7(C4xS3)96,113
C22.8(C4xS3) = C8xDic3central extension (φ=1)96C2^2.8(C4xS3)96,20
C22.9(C4xS3) = Dic3:C8central extension (φ=1)96C2^2.9(C4xS3)96,21
C22.10(C4xS3) = C24:C4central extension (φ=1)96C2^2.10(C4xS3)96,22
C22.11(C4xS3) = D6:C8central extension (φ=1)48C2^2.11(C4xS3)96,27
C22.12(C4xS3) = C6.C42central extension (φ=1)96C2^2.12(C4xS3)96,38
C22.13(C4xS3) = S3xC2xC8central extension (φ=1)48C2^2.13(C4xS3)96,106
C22.14(C4xS3) = C2xC8:S3central extension (φ=1)48C2^2.14(C4xS3)96,107
C22.15(C4xS3) = C2xC4xDic3central extension (φ=1)96C2^2.15(C4xS3)96,129
C22.16(C4xS3) = C2xDic3:C4central extension (φ=1)96C2^2.16(C4xS3)96,130
C22.17(C4xS3) = C2xD6:C4central extension (φ=1)48C2^2.17(C4xS3)96,134

׿
x
:
Z
F
o
wr
Q
<